top of page

Research Publications

Gili, K., Heuton, Kyle., Shah, Astha., Hughes, MC. Using machine learning to measure evidence of   students' sensemaking in physics courses. 2025. Preprint available at arXiv: 2503.15638 . Submitted to PRPER. 

 

Wojnowicz M., Gili K., Rath P., Miller E., Miller , Hancock C., O"Donovan M., Elkin-Frankston S.,                Brunye T., Hughes, MC. Discovering group dynamics in coordinated time series via hierarchical                    recurrent switching-state models. 2024. Preprint available at arXiv: 2401.14973. In review for TMLR. 

 

Gili, K., Alonso, G. & Schuld, M. An inductive bias from quantum mechanics: learning order effects with        non-commuting measurements. Quantum Mach. Intell. 6, 67 (2024).  (2023) Preprint available at arXiv: 2312.03862.

 

Gili, K; Hibat-Allah M; Marta M; Ballance, C; and Ortiz, Alejandro. “Do quantum circuit born                     machines generalize?”. Quantum Sci. Technol. 8 035021 (2023). Preprint available at arXiv:                     2207.13645.

        

Gili, K; Sveistrys, M; Ballance, C. “Introducing non-linear activations into quantum generative                       models” Phys. Rev. A 107, 012406 (2023). Preprint available at arXiv: 2205.14506.

 

Gili, K; Mauri, M; Perdomo-Ortiz, A. “Generalization metrics for practical quantum advantage in                generative models” (2022). Submitted to PRXQuantum. Preprint available at arXiv: 2201.08770.

        

Gibbs, J., Gili, K., Holmes, Z. et al. “Long-time simulations for fixed input states on quantum hardware. npj Quantum Inf 8, 135 (2022). Preprint available at arXiv: 2102.04313.

 

Sarma, A; Chatterjee, R; Gili, K; Yu, T. “Quantum unsupervised and supervised learning on                     superconducting processors”,Quantum Information and Computation, Vol. 20, No. 7&8 (2020) 541-552 Rinton Press. Preprint available at arXiv: 1909.04226.    

​

Siddiqui, A. U., Gili, K., & Ballance, C. (2024). Stressing out modern quantum hardware: Performance              evaluation and execution insights. Preprint available at arXiv: 2401.13793.

​

Gili, K; Kumar, R; Sveistrys, M; Ballance, C. “Generative modeling with quantum neurons.” (2023)                Preprint available at arXiv: 2302.00788.

    

ML Tools

Language encoding and probabilistic classification model for measuring student sensemaking on physics problems. 

 https://github.com/tufts-ml/AuSeM.git

 

Quantum ML model for detecting order effects in human data: 

https://github.com/kaitlinmgili/noncommutativity-ordereffects

 

Quantum ML model with mid-circuit measurements (code for simulator and Quantinuum Hardware: 

​https://github.com/kaitlinmgili/qnbm

 

​

    

© 2035 by Train of Thoughts. Powered and secured by Wix

bottom of page