Research Publications
Gili, K., Heuton, Kyle., Shah, Astha., Hughes, MC. Using machine learning to measure evidence of students' sensemaking in physics courses. 2025. Preprint available at arXiv: 2503.15638 . Submitted to PRPER.
Wojnowicz M., Gili K., Rath P., Miller E., Miller , Hancock C., O"Donovan M., Elkin-Frankston S., Brunye T., Hughes, MC. Discovering group dynamics in coordinated time series via hierarchical recurrent switching-state models. 2024. Preprint available at arXiv: 2401.14973. In review for TMLR.
Gili, K., Alonso, G. & Schuld, M. An inductive bias from quantum mechanics: learning order effects with non-commuting measurements. Quantum Mach. Intell. 6, 67 (2024). (2023) Preprint available at arXiv: 2312.03862.
Gili, K; Hibat-Allah M; Marta M; Ballance, C; and Ortiz, Alejandro. “Do quantum circuit born machines generalize?”. Quantum Sci. Technol. 8 035021 (2023). Preprint available at arXiv: 2207.13645.
Gili, K; Sveistrys, M; Ballance, C. “Introducing non-linear activations into quantum generative models” Phys. Rev. A 107, 012406 (2023). Preprint available at arXiv: 2205.14506.
Gili, K; Mauri, M; Perdomo-Ortiz, A. “Generalization metrics for practical quantum advantage in generative models” (2022). Submitted to PRXQuantum. Preprint available at arXiv: 2201.08770.
Gibbs, J., Gili, K., Holmes, Z. et al. “Long-time simulations for fixed input states on quantum hardware. npj Quantum Inf 8, 135 (2022). Preprint available at arXiv: 2102.04313.
Sarma, A; Chatterjee, R; Gili, K; Yu, T. “Quantum unsupervised and supervised learning on superconducting processors”,Quantum Information and Computation, Vol. 20, No. 7&8 (2020) 541-552 Rinton Press. Preprint available at arXiv: 1909.04226.
​
Siddiqui, A. U., Gili, K., & Ballance, C. (2024). Stressing out modern quantum hardware: Performance evaluation and execution insights. Preprint available at arXiv: 2401.13793.
​
Gili, K; Kumar, R; Sveistrys, M; Ballance, C. “Generative modeling with quantum neurons.” (2023) Preprint available at arXiv: 2302.00788.
ML Tools
Language encoding and probabilistic classification model for measuring student sensemaking on physics problems.
https://github.com/tufts-ml/AuSeM.git
Quantum ML model for detecting order effects in human data:
https://github.com/kaitlinmgili/noncommutativity-ordereffects
Quantum ML model with mid-circuit measurements (code for simulator and Quantinuum Hardware:
​https://github.com/kaitlinmgili/qnbm
​